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More inference for linear
regression

Confidence interval for the slope of a regression line

Consider Figure 1 relating Elmhurst College aid and student family income. The equation
for the least squares regression line along with the regression summary are shown in the
following statistical software output:

The regression equation is

aid = 24.31933 - 0.04307 family income

Predictor Coef SE Coef T P

Constant 24.31933 1.29145 18.831 < 2e-16

family income -0.04307 0.01081 -3.985 0.000229

S = 4.783 R-Sq = 24.86% R-Sq(adj) = 23.29%

The low p-value in the family income row, P = 0.000229, communicates that there is
indeed correlation between family income and financial aid at this college, as we’d expect.
The slope of the regression equation, b1 = −0.04307 tells us that for each increase of $1,000
in family income, the model predicts that the corresponding financial aid award decreases
by $43.07 on average.

 Example 1 The average decrease of $43.07 is a point estimate b1 based on a sample
of n = 50 randomly selected students. Construct a 95% confidence interval (CI) to
give an interval estimate of the genuine average decrease β1, and interpret the meaning
of the CI in context.

This CI is called a t-interval for the slope of the regression line. The quickest
way to check the assumptions for inference is to look at the residual plot for the
Elmhurst data. Since we see that data pairs are randomly scattered around the
regression line in Figure 1, we can proceed.

We need a CI of this form:

point estimate± t∗df × SE of estimate
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Figure 1: Elmhurst College gift aid and family income for n = 50 random
first-year students.

with t∗ determined by both our confidence level and the degrees of freedom of our
regression model. Here, we have point estimate b1 so the CI takes form:

b1 ± t∗df × SEb1

The regression summary provides the slope (b1 = −0.04307) and its standard error
(SEb1 = 0.01081). With n = 50, we have n−2 = 48 degrees of freedom. Using either
technology or a t-table, we find that with 95% confidence and df = 48, the multiplier
for SEb1 is t∗48 = 2.01. So we have the CI

−0.04307± 2.01× 0.01081 → −0.04307± 0.0217.

Calculating the bounds for the CI, we have lower bound−0.04307−0.0217 = −0.06477
and upper bound −0.04307 + 0.0217 = −0.02137.

Now we can interpret the meaning of this CI in context. The lower bound −0.06477
represents an aid decrease of $64.77 for each $1,000 increase in family income. Now
we carefully state our conclusion: We estimate with 95% confidence that for each
$1,000 increase in family income, the average decrease in financial aid is between
$21.37 and $64.77.

Prediction interval for a response value

Suppose that a student named Cam is planning to attend Elmhurst College this coming
fall. Cam would be curious about how much financial aid they are likely to receive based
on their family’s income of $52,000. The linear regression model gives a point estimate of
Cam’s aid award:

ŷ = 24.31933− 0.04307(52) = 22.07969 (in thousands)

For Cam’s family income x? = 52, or $52,000, the regression model predicts an aid award of
ŷ? = 22.07969, or about $22,080. Here we’ve marked both the predictor and the response
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variables with a star to indicate our focus on one specific value of the predictor variable, a
$52,000 family income.

But we know that our regression model is based on a sample of n = 50 students, and
that this estimate would be (at least a little) different if we had generated the regression
model from a different sample of Elmhurst students.

Expecting such sample variation, and confident that our sample data meets the as-
sumptions for inference, we can construct a confidence interval to give an interval estimate
of Cam’s expected aid. Here, the population parameter of interest is the unknown, specific
aid award Cam should expect based on their family’s income. We can calculate a 95% CI
for that expected aid. This CI is called a prediction interval for a response value.

Like many intervals for measurements, this prediction interval takes the form:

point estimate± t∗df × SE of estimate

For a chosen predictor value x?, our point estimate is ŷ? = b0 + b1x
?. We find t∗df using the

t-distribution with n− 2 degrees of freedom. And the formula for the standard error of ŷ?

is

SE =

√
s2e +

s2e
n

+ (SEb1)2 × (x? − x̄)2

where s2e is the variance of the residuals.1

This standard error formula is complicated, and a detailed description of its meaning
is left to a more advanced statistics course. Here at the introductory statistics level, we
should at least have some sense of why there are three (increasingly complicated) terms
involved in this SE calculation.

• s2e While estimating variation for a particular response ŷ? to a chosen x?, this
term represents the uncertainty associated with the residuals, the deviations between
observed values and the line itself.

• s2e
n Each particular response ŷ? for each particular predictor x? contributes its share

to the total variance of the residuals—this share is represented by the term
s2e
n , which

is the average contribution to the variance of the residuals from one data pair.

• (SEb1)2 × (x? − x̄)2 The linear regression model is anchored at the point (x̄, ȳ),
and as we choose values further and from the mean x̄, we should become less and
confident in our predictions ŷ for the response variable. This decreasing confidence
in the accuracy of the model’s predictions as we get further from the “middle” of the
scatterplot is captured by the term (SEb1)2× (x?− x̄)2, which increases in magnitude
as our choice of x? gets further from the predictor variable’s mean x̄.

The reasoning above is quite complicated, and understanding why these calculations make
sense requires deep study. Don’t be concerned if the explanations above aren’t intuitive or
even entirely understood. Let’s return to Cam’s family to illustrate the process.

 Example 2 Construct a 95% prediction interval to estimate the amount of aid
Elmhurst will award to Cam, whose family earns $52,000 per year.

We need to construct a prediction interval for a response value. Here, the predicted
response value is Cam’s Elmhurst gift aid, ŷ?, considering their family’s income of
$52,000, or x? = 52 for the linear regression model.

1Statistical software regression output usually includes the standard deviation of the residuals, often
denoted as S. Square that value for s2e.
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Whenever we construct a prediction interval, we should check that the conditions
for fitting the model are met. Since the residuals for the Elmhurst aid vs. income
data appear to have no pattern, we can assume that the residuals follow a normal
distribution and proceed.

The 95% prediction interval is a CI for a measurement, so it takes the form:

point estimate± t∗df × SE of estimate

Substituting our point estimate ŷ? and its SE we have:

ŷ? ± t∗df ×
√
s2e +

s2e
n

+ (SEb1)2 × (x? − x̄)2

In Example 1, we calculated the point estimate of Cam’s gift aid: ŷ? = b0 + b1x
? =

22.07969. Using technology or a t-table, we also determined that with df = 50− 2 =
48, a 95% confidence level requires t∗48 = 2.011 for its SE multiplier.

The Elmhurst data regression summary provides the SD of the residuals se (denoted
by S in our summary above) and the SE of the slope SEb1 . both need to be squared
for prediction interval calculations:

s2e = (4.783)2 (SEb1)2 = (0.01081)2

Last, we need the mean family income from the Elmhurst data set, x̄ = 101.779.

With all of these values, we carefully calculate2 Cam’s aid prediction interval:

point estimate± t∗df × SE of estimate

ŷ? ± t∗df ×
√
s2e +

s2e
n

+ (SEb1)2 × (x? − x̄)2

22.0796± 2.011×
√

(4.783)2 +
(4.783)2

50
+ (0.01081)2 × (52− 101.779)2

22.0796± 2.011× 4.860

22.0796± 9.772

Which yields a 95% prediction interval of (12.308, 31.851). So we can predict with
95% confidence that Cam’s family can expect Elmhurst to offer between $12,308 and
$31,851 in gift aid. Equivalently, we could predict with 95% confidence that Cam’s
family can expect Elmhurst to offer gift aid of about $22,080 with a margin of error
of $9,772.

Cam’s prediction interval has a huge margin of error. With a range of nearly $20,000,
this prediction interval may not help Cam much with their financial planning.

Confidence interval for the mean response value

We know from the Central Limit Theorem that mean values are more predictable than
individual measurements. So if Cam and their family consider the mean amount of aid

2Calculations were performed using a spreadsheet to minimize rounding error. If you check these
calculations “by hand,” you will notice error in the third decimal place.
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that Elmhurst offers families earning $52,000 per year, then they can expect a smaller
margin of error. Suppose that Cam would like to estimate the mean financial aid award
for all prospective Elmhurst students whose families earn $52,000 per year. In addition to
the point estimate, we can also construct a confidence interval for the mean response
value at a specific family income using the following formula:

ŷ? ± t∗df ×
√
s2e
n

+ (SEb1)2 × (x? − x̄)2

where ŷ? = b0 + b1x
? is the predicted response for a chosen predictor value x?.

Wait. Doesn’t that CI look familiar? A lot like the prediction interval for a specific
response value? The CI we use to estimate mean response to a chosen x? stated above uses
the same point estimate ŷ? as our prediction interval for a specific response value. That
makes sense because a linear regression model predicts the mean response ŷ for any chosen
x-value, but we usually read that response as a specific prediction.

See the difference between the prediction interval for a specific value and the confidence
interval for the mean response? The SE for the confidence interval for the mean response
value lacks the term, s2e, that accounts for variation among all of the residuals. Since we’re
considering the mean response for one input, we do not need to include the variance of all
the residuals s2e here.

 Example 3 Construct a 95% confidence interval for the mean amount of aid Elmhurst
will award to students whose families earn $52,000 per year.

The Elmhurst student aid data meets the conditions for inference. Remember that
random scatter of data pairs around the regression line—no patterns there.

In our work for Example 2 above, we collected all of the values we need. So we can
quickly calculate the 95% CI for the mean response:

ŷ? ± t∗df ×
√
s2e
n

+ (SEb1)2 × (x? − x̄)2

22.0796± 2.011×
√

(4.783)2

50
+ (0.01081)2 × (52− 101.779)2

22.0796± 2.011× 0.864

22.0796± 1.738

The 95% CI is (20.342, 23.817). Again we have a point estimate of $22,080, but the
margin of error for the mean response is only $1,738. Cam and their family can be
95% confident that the mean gift aid award for Elmhurst students whose families’
incomes are $52,000 is between $20,342 and $23,817.

Regression response CIs and extrapolation

Now that we can, for any chosen predictor value x?, estimate both a specific response to
x? with a prediction interval or the mean response to x? with a CI, we can get a better
sense of the utility of the regression model.
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x? ŷ? ±ME 95% prediction interval
0 24.3± 10.0 (14.4, 34.3)

52 22.1± 9.8 (12.3, 31.9)
100 20.0± 9.7 (10.3, 29.7)
250 13.6± 10.2 (3.3, 23.8)
500 2.8± 13.0 (−10.2, 15.8)

Table 2: 95% prediction intervals for gift aid (in 1,000s of dollars) for
students at varying levels of family income.

x? ŷ? ±ME 95 % CI for mean resp.
0 24.3± 2.6 (21.7, 26.9)

52 22.1± 1.7 (20.3, 23.8)
100 20.0± 1.4 (18.7, 21.4)
250 13.6± 3.5 (10.1, 17.0)
500 2.8± 8.8 (−6.0, 11.5)

Table 3: 95% CIs for mean gift aid (in 1,000s of dollars) awarded to all
Elmhurst students whose families have the indicated income level.

Let’s use both inference techniques to estimate both specific gift aid amounts and
mean gift aid amounts for Elmhurst students with these family incomes:

$0 - the lowest possible family income

$52,000 - about the median US income (like Cam’s family)

$100,000 - close to the mean family income for the sample of 50 Elmhurst students

$250,000 - near the maximum family income from the sample

$500,000 - an income significantly greater than any family’s income in the sample

The results are summarized in Table 2 and Table 3. We can see that in both tables, the
margin of error increases as the income level gets further from the mean income for the
Elmhurst sample data, $101,800.

The further away our chosen incomes are from the mean, the larger our intervals
become. For family income $500,000, both intervals include negative values, which make
absolutely no sense in this situation. The $500,000 example illustrates why extrapolation
can be treacherous. The Elmhurst aid vs. income regression model estimates the mean gift
aid fairly well, but not for incomes which are far above those incomes in the 50-student
sample.

We can get a visual sense of how these interval estimates change for different x-values
from Figure 4. Looking at the Confidence and Prediction bands, it might seem like it’s just
a better idea to estimate the mean response rather than to predict a specific response. But
we should remember that it’s important to estimate using the interval that makes sense for
the question at hand.

If Cam is curious about how much gift aid they can expect based on their family
income, Cam should stick with the prediction interval. As we calculated in Example 2,
Cam can be 95% confident that Elmhurst will award them between $12,308 and $31,851
in gift aid. But if Cam wants to consider the average gift aid awarded to all students with
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the same family income as Cam’s family, then Cam should consider the confidence interval
for mean response, which we calculated in Example 3, again with 95% confidence, to be
between $20,342 and $23,817. Looking at Figure 4, can you see both these intervals?

Figure 4: Elmhurst scatterplot with regression line, confidence band, and
prediction band
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Constructing a prediction interval for a response value

1. State the name of the CI being used.

• Prediction interval for a response value.

2. Verify conditions.

• The residual plot has no pattern.

3. Plug in the numbers and write the interval in the form:

point estimate ± t? × SE of estimate

Estimating a specific response value for chosen predictor value x?,

• The point estimate is ŷ?.

• df = n− 2

• The critical value t∗ can be found using technology or on the t-table at
row df = n− 2.

• SE =
√
s2e +

s2e
n + (SEb1)2 × (x? − x̄)2

4. Evaluate the CI and write in the form ( , ).

5. Interpret the interval. A generic statement: “We are [XX]% confident that
this interval contains the specific response y? corresponding to x?.”

6. State a meaningful conclusion to the original question, including context
details as needed.
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Constructing a confidence interval for the mean response value

1. State the name of the CI being used.

• Confidence interval for the mean response value.

2. Verify conditions.

• The residual plot has no pattern.

3. Plug in the numbers and write the interval in the form:

point estimate ± t? × SE of estimate

Estimating the mean response value for chosen predictor value x?,

• The point estimate is ŷ?.

• df = n− 2

• The critical value t∗ can be found using technology or on the t-table at
row df = n− 2.

• SE =
√

s2e
n + (SEb1)2 × (x? − x̄)2

4. Evaluate the CI and write in the form ( , ).

5. Interpret the interval. A generic statement: “We are [XX]% confident that
this interval contains the mean response value predicted by the regression
model to the value x?.”

6. State a meaningful conclusion to the original question, including context
details as needed.
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Exercises

1 Murders and poverty, Part IV. Exercise 8.29 (OpenIntro AHSS) presents data examining
the relationship between poverty and murder. Among 20 randomly selected metropolitan areas,
x̄ = 19.720% is the mean percentage of people living in poverty. Regression output for predicting
annual murders from percentage living in poverty is shown below.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -29.901 7.789 -3.839 0.001

poverty% 2.559 0.390 6.562 0.000

s = 5.512 R2 = 70.52% R2
adj = 68.89%

Find a 95% prediction interval for the annual murders per million in a metropolitan area with

(a) 9% of the population living in poverty (like Washington, D.C.)3

(b) 15% of the population living in poverty (about the average poverty rate for US cities)

(c) 40% of the population living in poverty (like Detroit, Michigan)4

2 Murders and poverty, Part V. Find a 95% confidence interval for the mean annual murders
per million in a metropolitan area with

(a) 9% of the population living in poverty (like Washington, D.C.)

(b) 15% of the population living in poverty (the average poverty rate for US cities)

(c) 40% of the population living in poverty (like Detroit, Michigan)

3 Murders and poverty, Part VI. In 2014, there were 105 murders in Washington, D.C., or
165.7 murders per million.5 Washington, D.C., has a low poverty rate of 9%.

(a) Use the regression model to calculate the residual for Washington, D.C., in 2014. Describe
the meaning of the residual.

(b) Does Washington, D.C.’s prediction interval from Exercise 0.1(a) capture its genuine number
of murders per million from 2014?

(c) Does the confidence interval for the mean annual murders per million for metropolitan areas
with 9% poverty from Exercise 0.2 capture Washington, D.C.’s genuine number of murders
per million from 2014?

(d) Why do you think that this linear regression model succeeds or fails to capture the actual data
from Washington, D.C. in 2014?

4 Cats, Part III. Exercise 8.30 (OpenIntro AHSS) presents regression output from a model for
predicting the heart weight (in g) of cats from their body weight (in kg). The model is based on
data from a sample of 144 domestic cats with mean weight x̄ = 2.724 kg. The regression output
is provided below:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.357 0.692 -0.515 0.607

body wt 4.034 0.250 16.119 0.000

s = 1.452 R2 = 64.66% R2
adj = 64.41%

Find a 95% prediction interval for the heart weight (in g) of a cat if you know that its weight is

(a) 5.5 kg (the weight of this writer’s cat, Dale)

3http://www.huffingtonpost.com/2011/10/25/cities-poverty-rates-lowest-census_n_1031285.

html
4http://www.cbsnews.com/media/americas-11-poorest-cities/
5http://wtop.com/local/2016/03/d-c-baltimore-city-among-top-murder-capitals-u-s/

http://www.huffingtonpost.com/2011/10/25/cities-poverty-rates-lowest-census_n_1031285.html
http://www.huffingtonpost.com/2011/10/25/cities-poverty-rates-lowest-census_n_1031285.html
http://www.cbsnews.com/media/americas-11-poorest-cities/
http://wtop.com/local/2016/03/d-c-baltimore-city-among-top-murder-capitals-u-s/
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(b) 9 kg (the weight of a very large, healthy cat)

(c) 21 kg (the weight of the heaviest known cat)

5 Cats, Part IV. Refer again to the regression output for the model that predicts cats’ heart
weights (in g) from the weights (in kg) provided above in Exercise 0.4.

Find a 95% confidence interval for the mean heart weight (in g) of cats that weigh

(a) 5.5 kg (the weight of this writer’s cat, Dale)

(b) 9 kg (the weight of a very large, healthy cat)

(c) 21 kg (the weight of the heaviest known cat)

6 Cats, Part V. Consider the prediction intervals from Exercise 0.4 and the confidence intervals
from Exercise 0.5. Should we trust that all of those intervals are accurate? (If you don’t know where
to start, do a little online research to find out what range of cats’ heart weights are reasonable.)

Solutions

Inference for linear regression

1

(a) SE =

√
(5.512)2 + (5.512)2

20
+ (0.390)2 × (9− 20.570)2 = 7.03

The prediction interval is −6.87± 14.763, or (−21.63, 7.89). With 95% confidence, the regres-
sion model predicts fewer than 7.9 murders per million for a metropolitan area with 9% of
its people living in poverty. (We haven’t stated the lower bound for this interval, since “−22
murders per million” makes no sense.)

(b) SE =

√
(5.512)2 + (5.512)2

20
+ (0.390)2 × (15− 20.570)2 = 5.94

The prediction interval is 8.48± 12.481, or (−4.00, 20.96). When a metropolitan area has 15%
of its people living in poverty, we can say with 95% confidence, the regression model predicts
8.48 murders per million with a margin of error of 12.48 murders per million. (Notice the
lower bound will be negative here, too.)

(c) SE =

√
(5.512)2 + (5.512)2

20
+ (0.390)2 × (40− 20.570)2 = 9.72

The 95% prediction interval is 72.46 ± 20.419, or (52.04, 92.88). With 95% confidence, the
regression model predicts between 52.0 and 92.9 murders per million for a metropolitan area
with 40% of its people living in poverty.

2

(a) SE =

√
(5.512)2

20
+ (0.390)2 × (9− 20.570)2 = 4.36

The confidence interval is −6.87±9.157, or (−16.03, 2.29). With 95% confidence, the regression
model predicts that the mean number of murders per million for metropolitan areas with 9%
of people living in poverty will be fewer than 2.3 murders per million.

(b) SE =

√
(5.512)2

20
+ (0.390)2 × (15− 20.570)2 = 2.22

The 95% confidence interval is 8.48± 4.654, or (3.83, 13.14). With 95% confidence, the regres-
sion model predicts that the mean number of murders per million for metropolitan areas with
15% of people living in poverty will be between 3.8 and 13.1 murders per million.

(c) SE =

√
(5.512)2

20
+ (0.390)2 × (40− 20.570)2 = 8.00

The 95% confidence interval is 72.46 ± 16.817, or (55.64, 89.28). With 95% confidence, the
regression model predicts that the mean number of murders per million for metropolitan areas
with 40% of people living in poverty will be between 55.6 and 89.3 murders per million.

3
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(a) The residual calculation for Washington, D.C. is

residual = 165.7− (−6.87) = 172.57.

That means that there were about 173 more murders per million in Washington, D.C., in 2014
than this regression model predicts.

(b) Washington, D.C.’s prediction interval, (−21.63, 7.89), does not capture its genuine number
of murders, about 166 per million, from 2014. (It’s not even close.)

(c) The confidence interval for the mean annual murders per million for metropolitan areas with
9% poverty, (−16.03, 2.29), does not capture Washington, D.C.’s 173 murders per million from
2014.

(d) The regression model uses many cities to capture a general trend. In 2014, Washington, D.C.,
was outstanding both for its low poverty rate and its high number of murders per million.
This kind of outlier won’t be predicted by a linear regression model.

4

(a) SE =

√
(1.452)2 + (1.452)2

144
+ (0.25)2 × (5.5− 2.724)2 = 1.61

The prediction interval is 21.83±3.191, or (18.64, 25.02). With 95% confidence, the regression
model predicts that a 5.5 kg (body weight) cat’s heart will weigh between 18.6 g and 25.0 g.

(b) SE =

√
(1.452)2 + (1.452)2

144
+ (0.25)2 × (9− 2.724)2 = 2.14

The 95% prediction interval is 35.95 ± 4.233, or (31.72, 40.18). With 95% confidence, the
regression model predicts that a 9 kg (body weight) cat’s heart will weigh between 31.7 g and
40.2 g.

(c) SE =

√
(1.452)2 + (1.452)2

144
+ (0.25)2 × (21− 2.724)2 = 4.80

The 95% prediction interval is 84.36 ± 9.481, or (74.88, 93.84). With 95% confidence, the
regression model predicts that a 21 kg (body weight) cat’s heart will weigh between 74.9 g
and 93.8 g.

5

(a) SE =

√
(1.452)2

144
+ (0.25)2 × (5.5− 2.724)2 = 0.70

The confidence interval is 21.83±1.393, or (20.44, 23.22). With 95% confidence, the regression
model predicts that the mean heart weight of cats with body weight 5.5 kg is between 20.4 g
and 23.2 g.

(b) SE =

√
(1.452)2

144
+ (0.25)2 × (9− 2.724)2 = 1.57

The 95% confidence interval is 35.95 ± 3.111, or (32.84, 39.06). With 95% confidence, the
regression model predicts that the mean heart weight of cats with body weight 9 kg is between
32.8 g and 39.1 g.

(c) SE =

√
(1.452)2

144
+ (0.25)2 × (21− 2.724)2 = 4.57

The 95% confidence interval is 84.36 ± 9.036, or (75.32, 93.39). With 95% confidence, the
regression model predicts that the mean heart weight of cats with body weight 5.5 kg is
between 75.3 g and 93.4 g.

6 An online search for “cat heart weight” reveals that healthy cat hearts typically weigh less
than 20 g (and less than 40 g for cats with heart conditions). That means that many of these
intervals are outside the realm of possibility. Since our choices for cat body weight are outside
the weights in the data set, this is no surprise. Extrapolating using a linear regression model to
x-values outside the data set usually gives bad predictions.
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