CONFIDENCE INTERVALS

Use confidence intervals to estimate a parameter with a particular confidence level, C.

IDENTIFY: Identify the parameter and the confidence level.

CHOOSE: Choose and name the appropriate interval.

CHECK: Check that conditions for the procedure are met.

CALCULATE:

CI: point estimate \pm critical value \times *SE* of estimate

df = (if applicable)

(____,___)

CONCLUDE:

We are C% confident that the true [parameter] is between _____ and _____. (Put the parameter in *context.*)

We have evidence that [...], because [...]. OR We do not have evidence that [...], because [...].

When the parameter is: a single proportion p

CHOOSE: **1-Proportion Z-Interval** to estimate *p*, or **1-Proportion Z-Test** to test H_0 : $p = p_0$.

CHECK:

- Data come from a random sample or process.
- for CI: $n\hat{p} \ge 10$ and $n(1 \hat{p}) \ge 10$. for Test: $np_0 \ge 10$ and $n(1 - p_0) \ge 10$.

CALCULATE: (1-PropZInt or 1-PropZTest) **point estimate**: sample proportion \hat{p}

SE of estimate: for CI, use $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$; for Test, use $\sqrt{\frac{p_0(1-p_0)}{n}}$

When the parameter is: a difference of proportions p_1-p_2

CHOOSE: **2-Proportion Z-Interval** to estimate $p_1 - p_2$, or **2-Proportion Z-Test** to test H_0 : $p_1 = p_2$.

CHECK:

- Data come from 2 independent random samples or 2 randomly assigned treatments.
- $n_1 \hat{p}_1 \ge 10, \ n_1 (1 \hat{p}_1) \ge 10,$ $n_2 \hat{p}_2 \ge 10, n_2 (1 - \hat{p}_2) \ge 10.$ Note: use \hat{p}_c , the pooled proportion, in place of \hat{p}_1 and \hat{p}_2 when checking condition for the 2-Proportion Z-Test

CALCULATE: (2-PropZInt or 2-PropZTest)

point estimate: difference of sample proportions $\hat{p}_1 - \hat{p}_2$ SE of estimate:

Cl, use $\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$; Test, use $\sqrt{\hat{p}_c(1-\hat{p}_c)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

HYPOTHESIS TESTS

Use **hypothesis tests** to **test** H_0 versus H_A at a particular significance level, α .

IDENTIFY: Identify the hypotheses and the significance level.

CHOOSE: Choose and name the appropriate test.

CHECK: Check that conditions for the procedure are met.

CALCULATE:

standardized test statistic = <u>point estimate – null value</u> SE of estimate df = (if applicable)p-value =

CONCLUDE:

p-value < α , so we reject H_0 . We have evidence that $[H_A]$. (Put H_A in *context*.) OR p-value > α , so we do NOT reject H_0 . We do NOT have evidence that $[H_A]$. (Put H_A in *context*.)

When the parameter is: a single mean μ

CHOOSE: **1-Sample T-Interval** to estimate μ , or **1-Sample T-Test** to test H_0 : $\mu = \mu_0$.

CHECK:

- Data come from a random sample or process.
- $n \ge 30$, OR population known to be nearly normal, OR population could to be nearly normal because data has no excessive skew or outliers (draw graph).

CALCULATE: (TInterval or T-Test)

point estimate: sample mean \bar{x} SE of estimate: $\frac{s}{\sqrt{n}}$ df = n - 1

When the parameter is: a difference of means μ_1 - μ_2

CHOOSE: **2-Sample T-Interval** to estimate $\mu_1 - \mu_2$, or **2-Sample T-Test** to test H_0 : $\mu_1 = \mu_2$.

CHECK:

- Data come from 2 independent random samples or 2 randomly assigned treatments.
- $n_1 \ge 30$ and $n_2 \ge 30$, OR *both* populations known to be nearly normal, OR both populations could be nearly normal because both data sets have no excessive skew or outliers (draw 2 graphs).

CALCULATE: (2-SampTInt or 2-SampTTest)

point estimate: difference of sample means $\bar{x}_1 - \bar{x}_2$

SE of estimate: $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ df: use technology

When the parameter is: a mean of differences μ_{diff}

CHOOSE: 1-Sample T-Interval to estimate μ_{diff} , or 1-Sample T-Test to test H_0 : $\mu_{diff} = 0$.

CHECK:

- There is paired data from a random sample or matched pairs experiment.
- $n_{diff} \ge 30$, OR population of differences known to be nearly normal, OR population of differences could be nearly normal because observed differences have no excessive skew or outliers (draw graph of *differences*).

CALCULATE: (TInterval or T-Test)

point estimate: mean of sample difference \bar{x}_{diff} **SE of estimate**: $\frac{s_{diff}}{\sqrt{n_{diff}}}$ $df = n_{diff} - 1$ When the parameter is: the slope β of a regression line

CHOOSE: **T-Interval for the slope** to estimate β , or **T-Test for the slope** to test H_0 : $\beta = 0$.

CHECK:

- There is (x, y) data from a random sample or experiment.
- The residual plot shows no pattern making a linear model reasonable. (More specifically, the residuals should be independent, nearly normal, and have constant standard deviation.)

CALCULATE: (LinRegTInt or LinRegTTest)

point estimate: sample slope *b*

SE of estimate: SE of slope (from computer output)

df = n - 2

The χ^2 tests for categorical variables: chi-square statistic = $\sum \frac{(observed - expected)^2}{expected}$

When comparing the distribution of one categorical variable to a fixed/specified population distribution

CHOOSE: **<u>x2</u>** Goodness of Fit Test

CHECK:

- Data come from a random sample or process.
- All expected counts \geq 5. (To calculate expected counts for each category, multiply the sample size by the expected proportion under H_0 .)

CALCULATE: (
$$\chi$$
2GOF-Test)
 $\chi^2 = df = \# \text{ of categories} - 1$

When comparing the distribution of a categorical variable across 2 or more populations/treatments

CHOOSE: x2 Test for Homogeneity

CHECK:

- Data come from 2 or more independent random samples or 2 or more randomly assigned treatments.
- All expected counts ≥ 5. (Calculate expected counts and verify this to be true.)

```
CALCULATE: (\chi 2-\text{Test}, \text{then } 2\text{ND } \text{MATRIX}, \text{EDIT}, 2: [B] \text{ to find expected counts})

\chi^2 = df = (\# \text{ of rows} - 1)(\# \text{ of cols} - 1)
```

When looking for association or dependence between two categorical variables

CHOOSE: x2 Test for Independence

CHECK:

- Data come from a random sample or process.
- All expected counts ≥ 5. (Calculate expected counts and verify this to be true.)

```
CALCULATE: (\chi2-Test, then 2ND MATRIX, EDIT, 2: [B] to find expected counts)
\gamma^2 =
```

$$df = (\# \text{ of rows} - 1)(\# \text{ of cols} - 1)$$